miércoles, 31 de julio de 2013

¿Como se Genera la Energía Eléctrica?

Rendered Image
La generación de energía eléctrica consiste en transformar alguna clase de energía química, mecánica, térmica o luminosa, entre otras, en energía eléctrica. Para la generación industrial se recurre a instalaciones denominadas centrales eléctricas, que ejecutan alguna de las transformaciones citadas. Estas constituyen el primer escalón del sistema de suministro eléctrico. La generación eléctrica se realiza, básicamente, mediante un generador; si bien estos no difieren entre sí en cuanto a su principio de funcionamiento, varían en función a la forma en que se accionan. Explicado de otro modo, difiere en qué fuente de energía primaria utiliza para convertir la energía contenida en ella, en energía eléctrica.

Desde que Nikola Tesla descubrió la corriente alterna y la forma de producirla en los alternadores, se ha llevado a cabo una inmensa actividad tecnológica para llevar la energía eléctrica a todos los lugares habitados del mundo, por lo que, junto a la construcción de grandes y variadas centrales eléctricas, se han construido sofisticadas redes de transporte y sistemas de distribución. Sin embargo, el aprovechamiento ha sido y sigue siendo muy desigual en todo el planeta. Así, los países industrializados o del Primer mundo son grandes consumidores de energía eléctrica, mientras que los países del llamado Tercer mundo apenas disfrutan de sus ventajas.


La demanda de energía eléctrica de una ciudad, región o país tiene una variación a lo largo del día. Esta variación es función de muchos factores, entre los que destacan: tipos de industrias existentes en la zona y turnos que realizan en su producción, climatología extremas de frío o calor, tipo de electrodomésticos que se utilizan más frecuentemente, tipo de calentador de agua que haya instalado en los hogares, la estación del año y la hora del día en que se considera la demanda. La generación de energía eléctrica debe seguir la curva de demanda y, a medida que aumenta la potencia demandada, se debe incrementar la potencia suministrada. Esto conlleva el tener que iniciar la generación con unidades adicionales, ubicadas en la misma central o en centrales reservadas para estos períodos. En general los sistemas de generación se diferencian por el periodo del ciclo en el que está planificado que sean utilizados; se consideran de base la nuclear y la eólica, de valle la termoeléctrica de combustibles fósiles, y de pico la hidroeléctrica principalmente (los combustibles fósiles y la hidroeléctrica también pueden usarse como base si es necesario).

Corriente Electrica

Rendered Image

La corriente eléctrica es la tasa de flujo de carga que pasa por un determinado punto 
de un circuito 
eléctrico, medido en Culombios/segundo, denominado Amperio. En la mayoría de los 
circuitos eléctrico de DC, se puede asumir que laresistencia al flujo de la corriente 
es una constante, de manera que la corriente en el circuito está relacionada con el voltaje y
 la resistencia, por medio de la ley de Ohm. Las abreviaciones estándares para esas
 unidades son 1 A = 1 C/s.


La corriente eléctrica es el flujo de carga eléctrica. En un conductor sólido son los electrones los que transportan la carga por el circuito. Esto se debe a que los electrones pueden moverse libremente por toda la red atómica. En los fluidos, el flujo de carga eléctrica puede deberse tanto a los electrones como a iones positivos y negativos. Hay que advertir que la carga total de un cable que transporta una corriente es cero. (El número de electrones del cable es igual al número de protones de todos los núcleos atómicos).

Conductividad y Resistividad


Rendered Image
Es la capacidad de un cuerpo de permitir el paso de la corriente eléctrica a través de sí. También es definida como la propiedad 
natural característica de cada cuerpo que representa la facilidad con la que los electrones (y huecos en el caso de los semiconductores) pueden pasar por él. Varía con la temperatura. Es una de las características más importantes de los materiales. La conductividad es la inversa de la resistividad, por tanto , se designa por la letra griega sigma minúscula (σ), y su unidad es el S/m (siemens por metro).
La conductividad eléctrica es la medida de la capacidad de un material que deja pasar la corriente eléctrica, su aptitud para dejar circular libremente las cargas eléctricas. La conductividad depende de la estructura atómica y molecular del material, los metales son buenos conductores porque tienen una estructura con muchos electrones con vínculos débiles y esto permite su movimiento. La conductividad también depende de otros factores físicos del propio material y de la temperatura.
La conductividad es la inversa de la resistividad, por tanto \scriptstyle \sigma = 1/\rho, y su unidad es el S/m (siemens por metro) o Ω-1·m-1. Usualmente la magnitud de la conductividad (σ) es la proporcionalidad entre el campo eléctrico \bold{E} y la densidad de corriente de conducción \bold{J}:
\bold{J} = \sigma \bold{E}




Rendered Image
 La resistividad es la condición intrínseca cada material para oponerse al paso de una corriente eléctrica. La resistividad es la inversa de la conductividad, por tanto \scriptstyle \rho = 1/\sigma. Se designa por la letra griega Rho minúscula (ρ) y se mide en ohmios metro (Ω•m).2
 \rho = R {S \over l}
en donde R es la resistencia en ohms, S la sección transversal en m² y l la longitud en m. Su valor describe el comportamiento de un material frente al paso de corriente eléctrica, por lo que da una idea de lo buen o mal conductor que es. Un valor alto de resistividad indica que el material es mal conductor mientras que uno bajo indicará que es un buen conductor.
Como ejemplo, un material de 1 m de largo por 1 m de ancho por 1 m de altura que tenga 1 Ω de resistencia tendrá una resistividad (resistencia específica, coeficiente de resistividad) de 1 Ω•m .Cálculo experimental de la resistividad de un metal

Magnitudes Eléctricas


Intensidad (I)

 La intensidad de corriente o corriente eléctrica se define como la cantidad de carga eléctrica (electrones) que pasa por un conductor en la unidad de tiempo.
Su unidad de medida es el amperio (A) y el aparato con el que se mide recibe el nombre de amperímetro.

Voltaje (V)

 El voltaje o tensión representa la diferencia de potencial existente entre dos puntos de un circuito eléctrico.
La tensión se mide en voltios (V) y su aparato de medida es el voltímetro.

Resistencia (R)

 Se define la resistencia eléctrica como la mayor o menor dificultad que opone un cuerpo al paso de la corriente eléctrica. Los materiales que presentan una gran oposición al paso de la electricidad reciben el nombre de aislante, y en consecuencia tienen una elevada resistencia eléctrica. Por el contrario, llamamos conductores a los materiales que apenas oponen resistencia al paso de la corriente.
La unidad de media de la resistencia eléctrica es el ohmio (Ω), y su aparato de medida el ohmímetro.

Potencia

 La potencia eléctrica es la capacidad que tiene un aparato para transformar la energía eléctrica en otro tipo de energía. Cuanto más rápido sea capaz de realizar esta transformación mayor será la potencia del mismo. Para calcularla mediante la siguiente expresión:
P  =  V ∙  I
I
Su unidad de medida es el watio (w) y el  aparato de medida el watímetro.

Energía

 La energía es la potencia consumida por unidad de tiempo, y responde a la siguiente expresión:
E  =  P ∙  t
Se mide en kilowatio-hora, mediante el contador de la luz instalado por la compañía eléctrica.

 Ley de Ohm

 A comienzos del siglo XX, G.S. Ohm descubrió que existía una relación entre las magnitudes fundamentales de la electricidad según una ley física que lleva su nombre y que se enuncia así:” La diferencia de potencial entre dos puntos de un circuito eléctrico es igual al producto de la intensidad que lo que recorre  por la resistencia eléctrica medida entre dichos puntos”.
 
V  =  R ∙  I

Simbología









SÍMBOLO
COMPONENTES
  Pila
 
 Batería
 
 Conductor
 
 Conexión
 
 Puente
 
Lampara 
 
 Resistencia
 
 Altavoz
 
 Motor
 
 Interruptor
 
 Conmutador
 
 Pulsador
 
 Fusible